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Numerical simulation algorithms for multiplicative noise (white or colored) are 
tested for accuracy against closed-form expressions for the Kubo oscillator. 
Direct white noise simulations lead to spurious decay of the modulus of the 
oscillator amplitude. A straightforward colored noise algorithm greatly reduces 
this decay and also provides highly accurate results in the white noise limit. 

KEY WORDS: Numerical simulation; multiplicative noise; Kubo oscillator. 

The widespread availability of rapid, large-scale computing has made 
Monte Carlo simulations an extremely powerful technique for investigating 
the properties of stochastic differential equations. The stochasticity appears 
in these equations as either additive or multiplicative noise terms. While 
simulations of additive noise have been thoroughly tested for their 
accuracy, (m) this is not the case for multiplicative noise. In addition, 
colored noise simulations have gained increased importance because of 
their relevance in a variety of physical situations. This has been especially 
true in the study of dye laser intensity fluctuations. (3) 

In this paper, we show results of tests of numerical algorithms that 
simulate colored and white, multiplicative noise for a stochastic differential 
equation that possesses closed-form, analytic solutions. This equation 
describes the so-called Kubo oscillator, (4) which is the prototype for all 
multiplicative stochastic processes, and has seen application in the theory 
of nuclear magnetic resonance and elsewhere. 

The Kubo oscillator is described by the complex stochastic differential 
equation 

Ot a(t)  = i(co o + o)(t) ) a( t) (1) 
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in which a(t) is a complex amplitude and co(t) is a real, stochastic 
frequency. In the colored noise regime co(t) satisfies an additive stochastic 
differential equation 

0 
co(t) = -2co(t) + 2~(t) (2) 

in which ~(t) is white noise, with correlation formula 

(~(t) ~(s) ) = Q6(t - s) (3) 

and zero mean. This engenders in co(t) the correlation formula 

(co(t) co(s)) = 1Q2e ~.l,-sl (4) 

In the limit 2 ~ o% co(t) becomes white noise with correlation formula 
identical with (3), and (1) is to be interpreted in the sense of 
Stratonovich.(5) 

Converting a(t) to polar coordinates 

a = re i~' (5) 

results in the exact differential equation for the probability density for the 
phase ~b: 

a I a +D(t)c~ff~5~2] at P(~b, t )=  -coo ~3--q~ P(~b, t) (6) 

in which D(t) is defined by 

D ( t ) = � 8 9  ;") (7) 

and the initial condition is P(~b, 0) = 3(~b - ~bo). The modulus of a(t), r, is a 
constant of the dynamics described by (1). 

Our studies focused on the mean phase (~b), the normalized variance 
(Ad?2)/(f/)) 2, and the skewness (JO3)/(Afb2) 3/2. These quantities may be 
determined in closed form from Eq. (6), which has the explicit solution 

 xp[,m ,m oimOo, 1 ['(0, t) = ~ , . =  o ~  

Define C, S, and T by 

C =  ~n-7 cos m(~o + coo t) exp --m 2 dsD(s) (9) 
m = l  
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m = l  m 

[ L ] T= ~-ssinm(q~o+co0t)exp - m  2 d s D ( s )  ( t l )  
m = l  

With these, we may write 

(,~) = ~ - 2 S  (12) 

(A~b2) = �89 + 4 C -  4S 2 (13) 

(Ar 3) 12T+ 2 4 S C -  16S 3 
(d  r  = (}~2 + 4 C -  4S2) 3/2 (14) 

These expressions were used to test the accuracy of multiplicative noise 
numerical algorithms for strongly colored, weakly colored, and white noise 
regimes. 

In the colored noise regimes, we numerically integrate Eqs. (1) and (2) 
simultaneously, generating Gaussianly distributed random numbers for 
Eq.(2) by the Box Mueller algorithm, (6) and treating Eq. (1) by the 
algorithm developed by Sancho et al. (7) The results of these simulations are 
compared with Eqs. (12)-(I4) in Figs. t-9, which cover three different 
values of 2. The strongly colored noise regime corresponds with 2 = 0.05, 
the weakly colored noise regime corresponds with 2 = 1.0, and for 2 = 10, 
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Fig. 1. Time evolution of the mean phase (~b) for colored noise, for Q=0.1 and 2=0.05. 
The step size was A=  1.5915x t0 -4 and 5000 stochastic trajectories were computed for 
Figs. 1-12. (D) Simulation results. 
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Fig. 2. Time evolution of the normalized variance ((zhb)2}/(r  2 for colored noise, for 
Q=0.1 and 2=0.05. 

the results are virtually indistinguishable from the results we obtained for 
white noise using the algorithm described below. 

Equation (1) can be numerically simulated by itself in the white noise 
case (in the Stratonovich interpretation). (7'8) In Figs. 10-12 we show the 
comparison for these simulations. We note that the agreement is equally 
good. However, in Fig. 13 we show the behavior of one trajectory for real 
and imaginary components of a(t). In Fig. 14a the same information is 
shown for r(t), a supposed constant of the motion! The white noise 
algorithm generates a spurious decay in the amplitude of each stochastic 
trajectory, although, as noted above, the phase behaves faithfully. In 
Fig. 14b we show r(t) for one trajectory calculated with the colored noise 
algorithm. No decay is visible and r(t) remains almost constant. 
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Skewness versus t, for Q=O.! and 2=0.05. 
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Fig. 4. 
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Plot of ( r  versus t, for Q =0.1 and 2 =  1.0. This represents weakly colored noise. 
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Fig. 5. Plot of ( ( A r 1 6 2  2 versus t, for Q = 0 . 1  and 2 =  1.0. 
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Fig. 6. Skewness versus t, for Q=0.1  and 2 =  1.0. 
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Fig. 7. Plot of ( r  versus t, for Q=0.1  and )~= 10.0. This represents very weakly colored 
noise. The curves in Figs. 7-9 are indistinguishable from those for white noise (Figs. 10-12). 
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Fig. 8. Plot of {(AO)-~)/(q~} 2 versus t, for Q=O.1 and )o= 10.0. 
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Fig. 9. Skewness versus t, for Q =0. I  and 2 =  10.0. 
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Plot of <r versus f, for ~he integration is done using the white noise algorithm, 
with Q=O.1. 

1.2 

-6- 

V 

0,9 

0.6, 

0.3- 

0~0" T {= ~ i ........ -~ 

0.0 2.0 4,0 6.0 8.0 
-f 

I 

I0,0 

Fig. 1l. Plot of <(A~)Z>/<q~) z versus t, for the integration is done using lbe white noise 
algorithm. 
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Fig. 12, Skewness versus t, for the integration is done using the white noise algorithm, 

Fig. 13. 
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The behavior of one stochastic trajectory generated by the white noise algorithm, for 
Q = 0,1, A spurious decay is evident. 
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Fig. 14. (a) The same information as in Fig. 13, for the modulus r(t) of a. The spurious 
exponential decay arises from the white noise algorithm. (b)r( t)  remains constant when the 
colored noise algorithm is used in the weakly colored noise regime (Q =0.1, 2 =  10.0). 
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Fig. 15. The behavior of one stochastic trajectory generated by the colored noise algorithm 
for Q=0.1 and 2=10.0. 
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In Fig. 15, we show one trajectory in the complex plane for a(t) when 
the colored noise algorithm is used instead. For this plot, 2 = 10, and the 
time course is the same as in Figs. 13-14. Virtually no decay in amplitude 
can be seen. 

Thus, the colored noise algorithm not only allows us to simulate 
strongly colored noise in the Kubo oscillator, but it also provides us with a 
highly accurate alternative to the white noise algorithm. Both phase and 
modulus are accurately portrayed. 

Denote the step size by A. In Eq. (A10) of Sancho etal.  (7~ [or 
equivalently in Eq. (3.138) of Risken(8)], the multiplicative noise gives rise 
to terms of order x/A and A. The latter term is responsible for the spurious 
decay in the modulus. The rate of decay is determined by Q. In the colored 
noise algorithm, Eq. (A25) of Ref. 7, the multiplicative noise terms are of 
order A and A 2. The A 2 term will still create an artifactual decay, but at a 
much slower rate (because A 2 is smaller than A for typically used step 
sizes), thus allowing us to simulate accurately the Kubo oscillation for 
longer times. On the other hand, reduction of step size for the algorithms of 
Sancho et al. and of Risken does not improve the situation, strongly 
suggesting that these algorithms are flawed for white noise. 

The direct simulation of multiplicative white noise stochastic differen- 
tial equations is fraught with difficulties and has recently been carefully 
examined by Klauder and Petersen. (9) The present study clearly indicates 
that the colored noise algorithm is straightforward, accurate, and even per- 
mits effective white noise simulation in its weakly colored noise regime. 
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